(x+1)(14+x+1)=21x^2

Simple and best practice solution for (x+1)(14+x+1)=21x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(14+x+1)=21x^2 equation:



(x+1)(14+x+1)=21x^2
We move all terms to the left:
(x+1)(14+x+1)-(21x^2)=0
determiningTheFunctionDomain -21x^2+(x+1)(14+x+1)=0
We add all the numbers together, and all the variables
-21x^2+(x+1)(x+15)=0
We multiply parentheses ..
-21x^2+(+x^2+15x+x+15)=0
We get rid of parentheses
-21x^2+x^2+15x+x+15=0
We add all the numbers together, and all the variables
-20x^2+16x+15=0
a = -20; b = 16; c = +15;
Δ = b2-4ac
Δ = 162-4·(-20)·15
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{91}}{2*-20}=\frac{-16-4\sqrt{91}}{-40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{91}}{2*-20}=\frac{-16+4\sqrt{91}}{-40} $

See similar equations:

| 4/k​+3=14 | | X^2+14x-375=0 | | -12(10+5x)+10=2x-118 | | −2/j​+7=−12 | | −2j​+7=−12 | | 5/3x+8/9=1 | | 2x+4=4×+6 | | -4(x-2)=-2(x-17) | | 1/2(4x+3)=6 | | 2xx2x-x=9 | | (X+2)(x+10)=425 | | x/(250+x)=15 | | 2x(2x+3)-7x=23-5(x+3x) | | 2x^2+69x+15=0 | | x/(100+x)=015 | | 3y(2y+3)-4y=-3 | | 3x+29=6×+32 | | 1/4x+3=-3/4x-26 | | 4x+36+8=44 | | 6y-4y-14=26.34 | | 19x-6+24-x=180 | | 10/2=a/(a-9) | | 2x+2+x+7=90 | | -u+90=196 | | 15p−9p=6 | | 7j+3j=20 | | -v+206=50 | | 6x^2-30=30 | | 7(9k+6)+4(8k-2)=0 | | 0.2x=100 | | 242=69-w | | 5a/7=12 |

Equations solver categories